<u>Helmholtz's Theorems</u>

Consider a **differential equation** of the following form:

$$g(t) = \frac{df(t)}{dt}$$

where g(t) is an **explicit** known function, and f(t) is the **unknown** function that we seek.

For example, the differential equation :

$$3t^2+t-1=\frac{df(t)}{dt}$$

has a solution:

$$f(t) = t^3 + \frac{t^2}{2} - t + c$$

Thus, the **derivative** of f(t) provides sufficient knowledge to determine the original function f(t) (to within a constant).

An interesting question, therefore, is whether knowledge of the **divergence** and or **curl** of a vector field is **sufficient** to determine the original vector field.

For example, say we **don't** know the expression for vector field $\mathbf{A}(\overline{r})$, but we **do** know its divergence is some scalar function $g(\overline{r})$:

$$abla \cdot \mathbf{A}(\overline{r}) = g(\overline{r})$$

Can we, then, **determine** the vector field $A(\bar{r})$? For example, can $A(\bar{r})$ be determined from the expression:

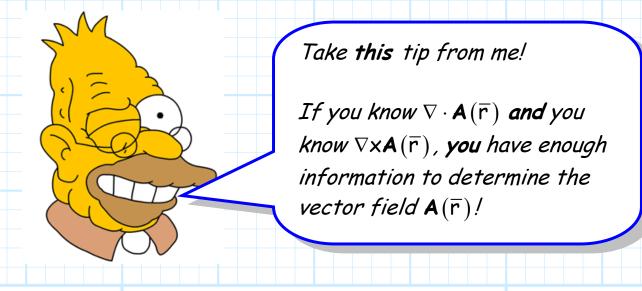
$$\nabla \cdot \mathbf{A}(\overline{r}) = \mathbf{X}(\mathbf{y}^2 - \mathbf{z}^3) \quad \ref{eq:point_starting_start_s$$

On the other hand, perhaps the knowledge of the curl is sufficient to find $A(\overline{r})$, i.e.:

$$\nabla \times \mathbf{A}(\overline{r}) = \cos \frac{2\pi}{n} \hat{a}_x + (x^2 - 6) \hat{a}_y + e^{-(x'_y)} \hat{a}_y$$

therefore $A(\bar{r})$ =????

It turns out that **neither** the knowledge of the divergence **nor** the knowledge of the curl **alone** is sufficient to determine a vector field. However, knowledge of **both** the curl and divergence of a vector field is sufficient!



Q: But **why** do we need knowledge of **both** the divergence and curl of a vector field in order to determine the vector field?

A: I know the answer to that as well!

Its because **every** vector field can be written as the **sum** of a **conservative** field and a **solenoidal** field!

That's correct! Any and every possible vector field $\mathbf{A}(\bar{\mathbf{r}})$ can be expressed as the sum of a conservative field $(C_A(\bar{\mathbf{r}}))$ and a solenoidal field $(S_A(\bar{\mathbf{r}}))$:

$$\mathbf{A}(\overline{\mathbf{r}}) = \mathbf{C}_{A}(\overline{\mathbf{r}}) + \mathbf{S}_{A}(\overline{\mathbf{r}})$$

Note then if $C_{A}(\bar{r}) = 0$, the vector field $A(\bar{r}) = S_{A}(\bar{r})$ is solenoidal. Likewise, if $S_{A}(\bar{r}) = 0$ the vector field $A(\bar{r}) = C_{A}(\bar{r})$ is conservative.

Of course, if **neither** term is zero (i.e., $C_A(\overline{r}) \neq 0$ and $S_A(\overline{r}) \neq 0$), the vector field $A(\overline{r})$ is **neither** conservative **nor** solenoidal!

Consider then what happens when we take the **divergence** of a vector field $\mathbf{A}(\overline{\mathbf{r}})$:

$$\nabla \cdot \boldsymbol{A}(\overline{\boldsymbol{r}}) = \nabla \cdot \boldsymbol{C}_{\mathcal{A}}(\overline{\boldsymbol{r}}) + \nabla \cdot \boldsymbol{S}_{\mathcal{A}}(\overline{\boldsymbol{r}})$$
$$= \nabla \cdot \boldsymbol{C}_{\mathcal{A}}(\overline{\boldsymbol{r}}) + \mathbf{0}$$
$$= \nabla \cdot \boldsymbol{C}_{\mathcal{A}}(\overline{\boldsymbol{r}})$$

Look what happened! Since the divergence of a solenoidal field is **zero**, the divergence of a general vector field $\mathbf{A}(\overline{\mathbf{r}})$ really just tells us the divergence of its conservative component.

The divergence of a vector field tells us **nothing** about its solenoidal component $S_{A}(\overline{r})!$

Thus, from $\nabla \cdot \mathbf{A}(\overline{\mathbf{r}})$ we can determine $C_{\mathcal{A}}(\overline{\mathbf{r}})$, but we haven't a clue about what $S_{\mathcal{A}}(\overline{\mathbf{r}})$ is!

Likewise, the curl of $\mathbf{A}(\overline{\mathbf{r}})$ is:

$$\nabla \mathbf{x} \mathbf{A}(\overline{\mathbf{r}}) = \nabla \mathbf{x} \mathbf{C}_{\mathcal{A}}(\overline{\mathbf{r}}) + \nabla \mathbf{x} \mathbf{S}_{\mathcal{A}}(\overline{\mathbf{r}})$$
$$= \mathbf{0} + \nabla \mathbf{x} \mathbf{S}_{\mathcal{A}}(\overline{\mathbf{r}})$$
$$= \nabla \mathbf{x} \mathbf{S}_{\mathcal{A}}(\overline{\mathbf{r}})$$

Look what happened! Since the **curl** of a conservative field is **zero**, the curl of a general vector field $\mathbf{A}(\overline{r})$ **really** just tells us the curl of its **solenoidal** component.

The curl of a vector field tells us **nothing** about its conservative component $C_{A}(\overline{r})!$

Thus, from $\nabla \mathbf{x} \mathbf{A}(\overline{\mathbf{r}})$ we can determine $\mathbf{S}_{A}(\overline{\mathbf{r}})$, but we haven't a **clue** about what $\mathbf{C}_{A}(\overline{\mathbf{r}})$ is!

CONCLUSION: We require knowledge of both $\nabla \cdot \mathbf{A}(\bar{\mathbf{r}})$ (for $C_{\mathcal{A}}(\bar{\mathbf{r}})$) and $\nabla \mathbf{x} \mathbf{A}(\bar{\mathbf{r}})$ (for $S_{\mathcal{A}}(\bar{\mathbf{r}})$) to determine the vector field $\mathbf{A}(\bar{\mathbf{r}})$.

From a **physical** stand point, this makes perfect sense!

Recall that we determined the curl $\nabla \mathbf{x} \mathbf{A}(\overline{\mathbf{r}})$ identifies the **rotational sources** of vector field $\mathbf{A}(\overline{\mathbf{r}})$, while the divergence $\nabla \cdot \mathbf{A}(\overline{\mathbf{r}})$ identifies the **divergent** (or convergent) **sources**.

Once we know the sources of vector field $\mathbf{A}(\overline{\mathbf{r}})$, we can of course find vector field $\mathbf{A}(\overline{\mathbf{r}})$.

Q: Exactly how do we find $\mathbf{A}(\overline{\mathbf{r}})$ from its sources $(\nabla \cdot \mathbf{A}(\overline{\mathbf{r}}) \text{ and } \nabla \times \mathbf{A}(\overline{\mathbf{r}}))$?

A1: I don't know.

A2: Note the sources of a vector field are determined from derivative operations (i.e., divergence and curl) on the vector field.

We can therefore conclude that a vector field $\mathbf{A}(\overline{r})$ can be determined from its sources with integral operations!

We'll learn **much more** about integrating sources later in the course!